
Validating Requirements for Fault Tolerant
Systems Using Model Checking’

by Frank Schneider

A model checking analysis of a complex fault tolerant
spacecraft controller was completed at the NASA/WVU IV&V
Facility during 1996-1997, by Frank Schneider2, Steve
Easterbrook, and Jack Callahan, and Gerard Holzman3

The fault tolerant spacecraft controller analyzed was required
to complete the execution of certain high priority tasks in the
face of external spacecraft faults. The faults are characterized
such that the controller could not proceed while a fault
persisted. Accordingly, the controller had to stop execution of
its high priority task; repair the fault; and subsequently
continue with the execution of the high priority task . In order
to make the process more efficient, and because certain
subtasks should not be repeated each subtask was labeled with
a “mark point” indicating that that subtask need not be repeated
should the over-all task be interrupted. For example, a
spacecraft turn with reaction wheels could not be repeated or
the spacecraft heading would be incorrect. Or, if a soil sample
were being gathered repeating a fetch for already retrieved
tools would be redundant and wasteful of battery power. In
this way all previously completed subtasks need not be
repeated and only the last partially completed subtask has to be
repeated. A typical sequence of events following a fault would
be:

(1) spacecraft command detects the presence of an error

(2) critical sequence execution is frozen,
(3) the fault causing the error is repaired,
(4) the critical sequence execution point is rolled back to

the beginning of the partially completed sub-sequence
(mark point), and

caused by a fault elsewhere in the spacecraft,

(5) re-execution of the high priority task is resumed.

To increase reliability and availability, a second redundant
system controller is also executed in parallel with the main or
prime controller. This backup controller could then take over
control of the spacecraft bus should the prime system go down
during the execution of these high priority tasks. A
consequence of prime failure was that the recovery mechanism

I The Research described in this article was carried out in part
by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration, and in part by West
Virginia University under NASA cooperative agreement
#NCC 2-979, Reference herein to any specific commercial
product, process, or service by trade, name , trademark
manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government, the Jet
Propulsion Laboratory, California Institute of Technology or
West Virginia University

Jet Propulsion Laboratory/California Institute of Technology
MS 125-233 Pasadena, CA 91109.

Computing Sciences Research, Bell Laboratories, Lucent
Technologies, Murray Hill, NJ 07974

2

3

included the possibility that the prime system could fail while it
was itself repairing an external fault.

Our work used model checking to validate the behavior of this
system. The state space available to the.entire system was
several orders of magnitude too large to examine all possible
behaviors. Accordingly, a model was abstracted from the
system design that contained key elements that governed the
system’s behavior. By abstracting away detail not germane to
the problem of interest, we were left with a partial
specification. Our analysis focused on faults that occurred
outside of the prime spacecraft controller. However, we were
able to derive consequences to prime and backup spacecraft
controllers failure with this approach.

Six separate requirements on the rollback scheme were
validated. Each of the six requirements involved approximately
100, 000 states in the model, and took about 30 seconds each.
The response and recovery in each case was to the injection of
a single spacecraft fault in all possible ways, based on the
model. Three anomalies were found in the system, showing
that meaningful results could be derived from a modeling
approach that uses only partial specifications. One anomaly
was an error in the detailed requirements, and the other two
were missing or ambiguous requirements.

Since this method allows the validation of partial
specifications, we concluded that it is also an effective
approach for use during the system development process. Here
an effective approach is for an IV&V team to work in parallel
with the development team. The IV&V team can then be
responsible for making sure each incremental-partial-design
element and its co-evolving implementation maintain fidelity
with each other. Accordingly, the over-all development product
should contain fewer errors. We expect this process to be
especially useful, since it is based on design analysis and most
errors in software development occur during the design phase
or earlier.

We are currently pursuing this methodology on a spacecraft
test system. Here the modeling approach will be used to check
that the implementation conforms to the requirements by
continuously monitoring the implementations’ conformance to
requirements whenever the test system is running.

This analysis was presented at the April 98 meeting of the
Third Annual International Conference on Requirements
Engineering (ICRE’98). It was named a “Best Paper” in its
category “ Safety, Survivability and Fault Tolerance.” A COPY

of the full paper can be found at http://research.ivv.nasa.gov/ .

http://research.ivv.nasa.gov

